Towards Understanding the Cathode Process Mechanism and Kinetics in Molten LiF–AlF3 during the Treatment of Spent Pt/Al2O3 Catalysts

Author:

Yasinskiy AndreyORCID,Padamata Sai KrishnaORCID,Stopic Srecko,Feldhaus Dominic,Varyukhin Dmitriy,Friedrich BerndORCID,Polyakov Peter

Abstract

Electrochemical decomposition of spent catalyst dissolved in molten salts is a promising approach for the extraction of precious metals from them. This article reports the results of the study of aluminum electrowinning from the xLiF–(1-x)AlF3 melt (x = 0.64; 0.85) containing 0–5 wt.% of spent petroleum Pt/γ-Al2O3 catalyst on a tungsten electrode at 740–800 °C through cyclic voltammetry and chronoamperometry. The results evidence that the aluminum reduction in the LiF–AlF3 melts is a diffusion-controlled two-step process. Both one-electron and two-electron steps occur simultaneously at close (or same) potentials, which affect the cyclic voltammograms. The diffusion coefficients of electroactive species for the one-electron process were (2.20–6.50)∙10−6 cm2·s–1, and for the two-electron process, they were (0.15–2.20)−6 cm2·s−1. The numbers of electrons found from the chronoamperometry data were in the range from 1.06 to 1.90, indicating the variations of the partial current densities of the one- and two-electron processes. The 64LiF–36AlF3 melt with about 2.5 wt.% of the spent catalysts seems a better electrolyte for the catalyst treatment in terms of cathodic process and alumina solubility, and the range of temperatures from 780 to 800 °C is applicable. The mechanism of aluminum reduction from the studied melts seems complicated and deserves further study to find the optimal process parameters for aluminum reduction during the spent catalyst treatment and the primary metal production as well.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3