Abstract
Interest in iridium and platinum has been steadily encouraged due to such unique properties as exceptional chemical inertia and corrosion resistance, high biological compatibility, and mechanical strength, which are the basis for their application in medical practice. Metal-organic chemical vapor deposition (MOCVD) is a promising method to fabricate Ir and Pt nanomaterials, multilayers, and heterostructures. Its advantages include precise control of the material composition and microstructure in deposition processes at relatively low temperatures onto non-planar substrates. The development of MOCVD processes is inextricably linked with the development of the chemistry of volatile precursors, viz., specially designed coordination and organometallic compounds. This review describes the synthesis methods of various iridium and platinum precursors, their thermal properties, and examples of the use of MOCVD, including formation of films for medical application and bimetallics. Although metal acetylacetonates are currently the most widely used precursors, the recently developed heteroligand Ir(I) and Pt(IV) complexes appear to be more promising in both synthetic and thermochemical aspects. Their main advantage is their ability to control thermal properties by modifying several types of ligands, making them tunable to deposit films onto different types of materials and to select a combination of compatible compounds for obtaining the bimetallic materials.
Funder
Russian Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献