Modelling of Microstructure Formation in Metal Additive Manufacturing: Recent Progress, Research Gaps and Perspectives

Author:

Gunasegaram Dayalan R.ORCID,Steinbach IngoORCID

Abstract

Microstructures encountered in the various metal additive manufacturing (AM) processes are unique because these form under rapid solidification conditions not frequently experienced elsewhere. Some of these highly nonequilibrium microstructures are subject to self-tempering or even forced to undergo recrystallisation when extra energy is supplied in the form of heat as adjacent layers are deposited. Further complexity arises from the fact that the same microstructure may be attained via more than one route—since many permutations and combinations available in terms of AM process parameters give rise to multiple phase transformation pathways. There are additional difficulties in obtaining insights into the underlying phenomena. For instance, the unstable, rapid and dynamic nature of the powder-based AM processes and the microscopic scale of the melt pool behaviour make it difficult to gather crucial information through in-situ observations of the process. Therefore, it is unsurprising that many of the mechanisms responsible for the final microstructures—including defects—found in AM parts are yet to be fully understood. Fortunately, however, computational modelling provides a means for recreating these processes in the virtual domain for testing theories—thereby discovering and rationalising the potential influences of various process parameters on microstructure formation mechanisms. In what is expected to be fertile ground for research and development for some time to come, modelling and experimental efforts that go hand in glove are likely to provide the fastest route to uncovering the unique and complex physical phenomena that determine metal AM microstructures. In this short Editorial, we summarise the status quo and identify research opportunities for modelling microstructures in AM. The vital role that will be played by machine learning (ML) models is also discussed.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3