Absorbing capabilities of additively manufactured lattice structure specimens for crash applications: Damage tolerant design and simulations

Author:

Tridello Andrea1ORCID,Boursier Niutta Carlo1ORCID,Benelli Alessandro2ORCID,Paolino Davide Salvatore1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin Italy

2. Department of Applied Science and Technology Politecnico di Torino Turin Italy

Abstract

AbstractIn the present work, the influence of defects on the compressive response of octet‐truss AlSi10Mg lattice structure specimens produced with a selective laser melting process is investigated. The defect population in one cell, in two cells, and cubic specimens composed of 27 cells has been assessed with micro‐computed tomography (micro‐CT) analyses. The statistical distributions of the characteristic defect sizes, i.e., the equivalent diameter, the volume, and the surface, assessed in the lattice structure specimens and in volumes randomly extracted from a rectangular bar have been compared. Finally, the compressive behavior of lattice structure specimens has been simulated with a simplified damage‐tolerant finite element model accounting for the influence of defects and compared with experimental results. The analyses have proven that the defect population in volumes extracted from a rectangular bar can provide reliable simulated results, even if micro‐CT inspections of a unit cell or specimens made of several cells are suggested.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3