Abstract
This study is focused on isothermal and anisothermal precipitation of M23C6 carbides from the fully ferritic structure of the (γ + δ) austenitic-ferritic duplex stainless steel X2CrNiMo2253, (2205). During isothermal heat treatments, small particles of K-M23C6 carbide precipitates at the δ/δ grain-boundaries. Their formation precedes γ and σ-phases, by acting as highly potential nucleation sites, confirming the undertaken TEM investigations. Furthermore, anisothermal heat treatment leads to the formation of very fine islands dispersed throughout the fully δ-ferritic matrix. TEM characterization of these islands reveals a particular eutectoid, reminiscent of the well-known (γ-σ)—eutectoid, usually encountered in this kind of steel. TEM and electron microdiffraction techniques were used to determine the crystal structure of the eutectoid constituents: γ-Austenite and K-M23C6 carbides. Based on this characterization, orientation relationships between the two latter phases and the ferritic matrix were derived: cube-on-cube, on one hand, between K-M23C6 and γ-Austenite and Kurdjumov-Sachs, on the other hand, between γ-Austenite and the δ-ferritic matrix. Based on these rational orientation relationships and using group theory (symmetry analysis), the morphology and the only one variant number of K-M23C6 in γ-Austenite have been elucidated and explained. Thermodynamic calculations, based on the commercial software ThermoCalq® (Thermo-Calc Software, Stockholm, Sweden), were carried out to explain the K-M23C6 precipitation and its effect on the other decomposition products of the ferritic matrix, namely γ-Austenite and σ-Sigma phase. For this purpose, the mole fraction evolution of K-M23C6 and σ-phase and the mass percent of all components entering in their composition, have been drawn. A geometrical model, based on the corrugated compact layers instead of lattice planes with the conservation of the site density at the interface plane, has been proposed to explain the transition δ-ferrite ⇒ {γ-Austenite ⇔ K-M23C6}.
Subject
General Materials Science,Metals and Alloys
Reference76 articles.
1. Practical guide to using duplex stainless steels;Davison;Mater. Perform.,1990
2. The role of duplex stainless steels in the oil and gas industry;Diggs,1991
3. Industrial experience with duplex stainless steel related to their specific properties;Fruytier,1991
4. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications – A recent review
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献