Microstructure and Mechanical Properties of Composites Obtained by Spark Plasma Sintering of Al–Fe66Cr10Nb5B19 Metallic Glass Powder Mixtures

Author:

Dudina Dina V.ORCID,Bokhonov Boris B.ORCID,Batraev Igor S.ORCID,Kvashnin Vyacheslav I.,Legan Mikhail A.ORCID,Novoselov Aleksey N.,Anisimov Alexander G.,Esikov Maksim A.ORCID,Ukhina Arina V.,Matvienko Alexander A.,Georgarakis Konstantinos,Koga Guilherme Yuuki,Moreira Jorge AlbertoORCID

Abstract

At present, metallic glasses are evaluated as alternative reinforcements for aluminum matrix composites. These composites are produced by powder metallurgy via consolidation of metallic glass-aluminum powder mixtures. In most studies, the goal has been to preserve the glassy state of the reinforcement during consolidation. However, it is also of interest to track the structure evolution of these composites when partial interaction between the matrix and the metallic glass is allowed during sintering of the mixtures. The present work was aimed to study the microstructure and mechanical properties of composites obtained by spark plasma sintering (SPS) of Al-20 vol.% Fe66Cr10Nb5B19 metallic glass mixtures and compare the materials, in which no significant interaction between the matrix and the Fe-based alloy occurred, with those featuring reaction product layers of different thicknesses. Composite materials were consolidated by SPS at 540 and 570 °C. The microstructure and mechanical properties of composites obtained by SPS and SPS followed by forging, composites with layers of interfacial reaction products of different thicknesses, and metallic glass-free sintered aluminum were comparatively analyzed to conclude on the influence of the microstructural features of the composites on their strength.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3