Effects of Heat Treatment on the Interface Microstructure and Mechanical Properties of Friction-Stir-Processed AlCoCrFeNi/A356 Composites

Author:

Hu Shengqing1,Wang Kai1ORCID,Ma Simu1,Qi Haoran1,He Naijun1,Li Fuguo2ORCID

Affiliation:

1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Equiatomic AlCoCrFeNi high-entropy alloy (HEA) has gained significant interest in recent years because of its excellent mechanical properties. A356 aluminum alloy reinforced by AlCoCrFeNi HEA particles was fabricated by friction stir processing (FSP) and subsequent heat treatment. Solution and aging treatments were specially performed for the composites to control the interface microstructure, and interfacial microstructure and tensile properties were explored at different conditions. The interface between the matrix and HEA particles showed a dual-layered core–shell structure and the thickness of the shell region increased with the solution time. The microstructure located in the shell layers consisted of a solid solution with increasing aluminum content, in which a radial-shaped solid solution phase formed in the region close to the core of the HEA particle and scattered solid solution grains with high Ni content formed in the region close to the matrix alloy. The gradient of composition and microstructure across the HEA/Al interface can be obtained through heat treatment, and an optimal interface bonding state and mechanical property were obtained after solution treatment for 2 h. Compared with FSPed A356 aluminum alloy, the FSPed composite enhanced the tensile stress by 60 MPa and the stain by 5% under the optimized conditions. The overgrowth of the shell layer decreased both the tensile strength and the ductile greatly due to the formation of a radial-shaped solid solution phase in the shell region.

Funder

State Key Laboratory of Solidification Processing in NPU

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3