Experimental Characterization of an Adaptive Supersonic Micro Turbine for Waste Heat Recovery Applications

Author:

Popp Tobias,Weiß Andreas P.,Heberle FlorianORCID,Winkler Julia,Scharf Rüdiger,Weith TheresaORCID,Brüggemann Dieter

Abstract

Micro turbines (<100 kWel) are commercially used as expansion machines in waste heat recovery (WHR) systems such as organic Rankine cycles (ORCs). These highly loaded turbines are generally designed for a specific parameter set, and their isentropic expansion efficiency significantly deteriorates when the mass flow rate of the WHR system deviates from the design point. However, in numerous industry processes that are potentially interesting for the implementation of a WHR process, the temperature, mass flow rate or both can fluctuate significantly, resulting in fluctuations in the WHR system as well. In such circumstances, the inlet pressure of the ORC turbine, and therefore the reversible cycle efficiency must be significantly reduced during these fluctuations. In this context, the authors developed an adaptive supersonic micro turbine for WHR applications. The variable geometry of the turbine nozzles enables an adjustment of the swallowing capacity in respect of the available mass flow rate in order to keep the upper cycle pressure constant. In this paper, an experimental test series of a WHR ORC test rig equipped with the developed adaptive supersonic micro turbine is analysed. The adaptive turbine is characterized concerning its off-design performance and the results are compared to a reference turbine with fixed geometry. To create a fair data basis for this comparison, a digital twin of the plant based on experimental data was built. In addition to the characterization of the turbine itself, the influence of the improved pressure ratio on the energy conversion chain of the entire ORC is analysed.

Funder

Bavarian Research Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3