Spatial–Temporal and Driving Factors of Land Use/Cover Change in Mongolia from 1990 to 2021

Author:

Hao Junming1ORCID,Lin Qingrun1,Wu Tonghua2ORCID,Chen Jie2ORCID,Li Wangping1,Wu Xiaodong2ORCID,Hu Guojie2,La Yune2

Affiliation:

1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

During the past several decades, desertification and land degradation have become more and more serious in Mongolia. The drivers of land use/cover change (LUCC), such as population dynamics and climate change, are increasingly important to local sustainability studies. They can only be properly analyzed at small scales that capture the socio-economic conditions. Several studies have been carried out to examine the pattern of LUCC in Mongolia, but they have been focused on changes in single land types at a local scale. Although some of them were carried out at the national scale, the data interval is more than 10 years. A small-scale and year-by-year dataset of LUCC in Mongolia is thus needed for comprehensive analyses. We obtained year-by-year land use/cover changes in Mongolia from 1990 to 2021 using Landsat TM/OLI data. First, we established a random forest (RF) model. Then, in order to improve the classification accuracy of the misclassification of cropland, grassland, and built and barren areas, the classification and regression trees model (CART) was introduced for post-processing. The results show that 17.6% of the land surface has changed at least once among the six land categories from 1990 to 2021. While the area of barren land has significantly increased, the grassland and forest areas have exhibited a decreasing trend in the past 32 years. The other land types do not show promising changes. To determine the driving factors of LUCC, we applied an RF feature importance ranking to environmental factors, physical factors, socioeconomic factors, and accessibility factors. The mean annual precipitation (MAP), evapotranspiration (ET), mean annual air temperature (MAAT), DEM, GDP, and distance to railway are the main driving factors that have determined the distribution and changes in land types. Interestingly, unlike the global anti-V-shaped pattern, we found that the land use/cover changes show an N-shaped trend in Mongolia. These characteristics of land use/cover change in Mongolia are primarily due to the agricultural policies and rapid urbanization. The results present comprehensive land use/cover change information for Mongolia, and they are of great significance for policy-makers to formulate a scientific sustainable development strategy and to alleviate the desertification of Mongolia.

Funder

National Natural Science Foundation of China

the CAS “Light of West China” Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3