Parallel Optimization for Large Scale Interferometric Synthetic Aperture Radar Data Processing

Author:

Zhang Weikang12ORCID,You Haihang12,Wang Chao3ORCID,Zhang Hong3ORCID,Tang Yixian3

Affiliation:

1. State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

2. Zhongguancun Laboratory, Beijing 100094, China

3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Interferometric synthetic aperture radar (InSAR) has developed rapidly over the past years and is considered as an important method for surface deformation monitoring, benefiting from growing data quantities and improving data quality. However, the handing of SAR big data poses significant challenges for related algorithms and pipeline, particularly in large-scale SAR data processing. In addition, InSAR algorithms are highly complex, and their task dependencies are intricate. There is a lack of efficient optimization models and task scheduling for InSAR pipeline. In this paper, we design parallel time-series InSAR processing models based on multi-thread technology for high efficiency in processing InSAR big data. These models concentrate on parallelizing critical algorithms that have high complexity, with a focus on deconstructing two computationally intensive algorithms through loop unrolling. Our parallel models have shown a significant improvement of 10–20 times in performance. We have also developed a parallel optimization tool, Simultaneous Task Automatic Runtime (STAR), which utilizes a data flow optimization strategy with thread pool technology to address the problem of low CPU utilization resulting from multiple modules and task dependencies in the InSAR processing pipeline. STAR provides a data-driven pipeline and enables concurrent execution of multiple tasks, with greater flexibility to keep the CPU busy and further improve CPU utilization through predetermined task flow. Additionally, a supercomputing-based system has been constructed for processing massive InSAR scientific big data and providing technical support for nationwide surface deformation measurement, in accordance with the framework of time series InSAR data processing. Using this system, we processed InSAR data with the volumes of 500 TB and 700 TB in 5 and 7 days, respectively. Finally we generated two maps of land surface deformation all over China.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Adaptable Software for Pre-Programmed Internet Tasks: Enhancing Reliability and Efficiency;Applied Sciences;2024-08-05

2. A Novel Cloud-Native and Multi-Platform Parallelized SBAS-INSAR Algorithm;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. A national-scale assessment of land subsidence in China’s major cities;Science;2024-04-19

4. Efficient Management and Processing of Massive InSAR Images Using an HPC-Based Cloud Platform;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3