AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAVs

Author:

Koubaa Anis1ORCID,Ammar Adel1ORCID,Abdelkader Mohamed1ORCID,Alhabashi Yasser1,Ghouti Lahouari1ORCID

Affiliation:

1. College of Computer & Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

Unmanned aerial vehicles (UAVs) equipped with computer vision capabilities have been widely utilized in several remote sensing applications, such as precision agriculture, environmental monitoring, and surveillance. However, the commercial usage of these UAVs in such applications is mostly performed manually, with humans being responsible for data observation or offline processing after data collection due to the lack of on board AI on edge. Other technical methods rely on the cloud computation offloading of AI applications, where inference is conducted on video streams, which can be unscalable and infeasible due to remote cloud servers’ limited connectivity and high latency. To overcome these issues, this paper presents a new approach to using edge computing in drones to enable the processing of extensive AI tasks onboard UAVs for remote sensing. We propose a cloud–edge hybrid system architecture where the edge is responsible for processing AI tasks and the cloud is responsible for data storage, manipulation, and visualization. We designed AERO, a UAV brain system with onboard AI capability using GPU-enabled edge devices. AERO is a novel multi-stage deep learning module that combines object detection (YOLOv4 and YOLOv7) and tracking (DeepSort) with TensorRT accelerators to capture objects of interest with high accuracy and transmit data to the cloud in real time without redundancy. AERO processes the detected objects over multiple consecutive frames to maximize detection accuracy. The experiments show a reduced false positive rate (0.7%), a low percentage of tracking identity switches (1.6%), and an average inference speed of 15.5 FPS on a Jetson Xavier AGX edge device.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3