A Review on Submarine Geological Risks and Secondary Disaster Issues during Natural Gas Hydrate Depressurization Production

Author:

Ma Xianzhuang12,Jiang Yujing12ORCID,Yan Peng2,Luan Hengjie2,Wang Changsheng2ORCID,Shan Qinglin2,Cheng Xianzhen2

Affiliation:

1. Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan

2. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The safe and efficient production of marine natural gas hydrates faces the challenges of seabed geological risk issues. Geological risk issues can be categorized from weak to strong threats in four aspects: sand production, wellbore instability, seafloor subsidence, and submarine landslides, with the potential risk of natural gas leakage, and the geological risk problems that can cause secondary disasters dominated by gas eruptions and seawater intrusion. If the gas in a reservoir is not discharged in a smooth and timely manner during production, it can build up inside the formation to form super pore pressure leading to a sudden gas eruption when the overburden is damaged. There is a high risk of overburden destabilization around production wells, and reservoirs are prone to forming a connection with the seafloor resulting in seawater intrusion under osmotic pressure. This paper summarizes the application of field observation, experimental research, and numerical simulation methods in evaluating the stability problem of the seafloor surface. The theoretical model of multi-field coupling can be used to describe and evaluate the seafloor geologic risk issues during depressurization production, and the controlling equations accurately describing the characteristics of the reservoir are the key theoretical basis for evaluating the stability of the seafloor geomechanics. It is necessary to seek a balance between submarine formation stability and reservoir production efficiency in order to assess the optimal production and predict the region of plastic damage in the reservoir. Prediction and assessment allow measures to be taken at fixed points to improve reservoir mechanical stability with the numerical simulation method. Hydrate reservoirs need to be filled with gravel to enhance mechanical strength and permeability, and overburden need to be grouted to reinforce stability.

Funder

Shandong Provincial Natural Science Foundation

Youth Innovation Team of the Shandong Higher Education Institutions

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3