Evaluation of Thermal and Mechanical Properties of Foamed Phosphogypsum-Based Cementitious Materials for Well Cementing in Hydrate Reservoirs

Author:

Tang Jiadi12ORCID,Zhao Yusheng3,Cheng Wan2ORCID,Liu Tianle2,Yang Guokun2,Chen Mingsheng2,Lei Gang12ORCID,Xu Jian4,Huang Yongning4

Affiliation:

1. Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China

2. National Center for International Research on Deep Earth Drilling and Resource Development, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

3. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. PetroChina Tarim Oilfield Company, Korla 841000, China

Abstract

As detrimental byproduct waste generated during the production of fertilizers, phosphogypsum can be harmlessly treated by producing phosphogypsum-based cementitious materials (PGCs) for offshore well cementing in hydrate reservoirs. To be specific, the excellent mechanical properties of PGCs significantly promote wellbore stability. And the preeminent temperature control performance of PGCs helps to control undesirable gas channeling, increasing the formation stability of natural gas hydrate (NGH) reservoirs. Notably, to further enhance temperature control performance, foaming agents are added to PGCs to increase porosity, which however reduces the compressive strength and increases the risk of wellbore instability. Therefore, the synergetic effect between temperature control performance and mechanical properties should be quantitatively evaluated to enhance the overall performance of foamed PGCs for well cementing in NGH reservoirs. But so far, most existing studies of foamed PGCs are limited to experimental work and ignore the synergetic effect. Motivated by this, we combine experimental work with theoretical work to investigate the correlations between the porosity, temperature control performance, and mechanical properties of foamed PGCs. Specifically, the thermal conductivity and compressive strength of foamed PGCs are accurately determined through experimental measurements, then theoretical models are proposed to make up for the non-repeatability of experiments. The results show that, when the porosity increases from 6% to 70%, the 7 d and 28 d compressive strengths of foamed PGCs respectively decrease from 21.3 MPa to 0.9 MPa and from 23.5 MPa to 1.0 MPa, and the thermal conductivity decreases from 0.33 W·m−1·K−1 to 0.12 W·m−1·K−1. Additionally, an overall performance index evaluation system is established, advancing the application of foamed PGCs for well cementing in NGH reservoirs and promoting the recycling of phosphogypsum.

Funder

Natural Science Foundation of Guangdong Province, China

National Natural Science Foundation of China

Key Laboratory of Gas Hydrate, Ministry of Natural Resources

Qiankehe Foundation

Fundamental Research Funds for the Central Universities, China University of Geosciences

China University of Geosciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3