Large-Eddy Simulation of Low-Frequency Flow Oscillations for NACA0012 and Dynarig Sail at Large Attack Angles

Author:

Zeng Qingsong12ORCID,Cai Wei12,Xu Junhui12

Affiliation:

1. Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China

2. Hainan Institute, Wuhan University of Technology, Sanya 572025, China

Abstract

Unmanned sailboats, harnessing wind for propulsion, offer great potential for extended marine research due to their virtually unlimited endurance. The sails typically operate at high attack angles, which contrasts with aircraft that maintain small angles to prevent stalling. Despite the reduction in lift during stalling, the resultant increase in drag contributes significantly to the sail’s thrust. However, the sail often experiences vortex shedding due to high attack angles, leading to low-frequency oscillations and erratic navigation. This study employs large-eddy simulations (LESs) on a 3D NACA0012 sail at a Reynolds number of 3.6 × 105, which is validated by experimental data. It observes the lift and drag coefficients across attack angles from 5 to 90 degrees and compares these with a Dynarig sail. The findings reveal that higher attack angles amplify fluctuations in lift and drag coefficients. Vortex shedding, resulting from flow separation, creates pressure changes and oscillations in aerodynamic forces. Fast Fourier transformation (FFT) analysis identifies dominant frequencies between 0.5 and 10 Hz, indicating low-frequency oscillations. The study’s insights into the impact of attack angle and sail type on the oscillation frequency are favorable for the design of unmanned sailboats, aiding in the prediction of wind-induced frequencies and optimal attack angle determination.

Funder

Fundamental Research Funds for the Central Universities

Hainan Institute of Wuhan University of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3