Affiliation:
1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150006, China
Abstract
Aiming at the problem of hovercraft formation–containment control with compound perturbations including model uncertainties and ocean disturbances, a distributed control algorithm for underactuated hovercraft formation–containment is proposed by combining adaptive linear extended state observer (ALESO) and radial basis function neural network (RBFNN). Firstly, ALESO and RBFNN are designed to estimate the ocean disturbances and model uncertainties, respectively, for dynamic compensation in the controller. Then, the auxiliary variables are introduced into the formation error function, and the lateral and longitudinal error stabilization is transformed into the design of longitudinal force and rotational torque by using the skew-symmetric matrix transformation, which solves the lateral underactuated problem of the hovercraft. Finally, the uniform ultimate boundedness of formation–containment cooperative errors is proved by the Lyapunov stability theory. Digital simulation verifies the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
National Key Basic Strengthen Research Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献