Coupling Effects of a Top-Hinged Buoyancy Can on the Vortex-Induced Vibration of a Riser Model in Currents and Waves

Author:

Yu Chi1ORCID,Zhang Sheng2,Zhang Cheng2

Affiliation:

1. Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China

2. School of Marine Science and Engineering, South China University of Technology, Guangzhou 511442, China

Abstract

In order to investigate the effects of the top-end dynamic boundary of risers caused by floater motions on their vortex-induced vibration (VIV) characteristics, a combined model comprising a buoyancy can with a relatively simple structural form and a riser is taken as the research object in the present study. The aspect ratios of the buoyancy can and the riser model are 5.37 and 250, respectively. A set of experimental devices is designed to support the VIV test of the riser with a dynamic boundary stimulating the vortex-induced motion (VIM) of the buoyancy can under different uniform flow and regular wave conditions. Several data processing methods are applied in the model test, i.e., mode superposition, Euler angle conversion, band pass filter, fast Fourier transform, and wavelet transform. Based on the testing results, the effect of low-frequency VIM on the high-frequency VIV of the riser is discussed in relation to a single current, a single wave, and a combined wave and current. It is found that the coupling effect of VIM on the riser VIV presents certain orthogonal features at low current velocities. The effect of the cross-flow VIM component on VIV is far more prominent than that of its counterpart, the in-line VIM, with increasing flow velocity. The VIM in the combined wave–current condition significantly enhances the modulation of vibration amplitude and frequency, resulting in larger fluctuation peaks of vibration response and further increasing the risk of VIV fatigue.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Marine Engineering: Geological Environment and Hazards II;Journal of Marine Science and Engineering;2024-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3