Study on the Vibration Characteristics of Marine Riser Based on Flume Experiment and Numerical Simulation

Author:

Cai Qiurui12ORCID,Li Zhengnong12,Chan Ricky W. K.3ORCID,Luo Han12,Duan Guodi12,Huang Bin4ORCID,Wu Honghua12

Affiliation:

1. Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha 410082, China

2. College of Civil Engineering, Hunan University, Changsha 410082, China

3. School of Engineering, RMIT University Melbourne, Melbourne, VIC 3001, Australia

4. School of Civil Engineering and Architecture, Hainan University, Haikou 570228, China

Abstract

This study investigated vortex-induced vibrations of marine risers in Ocean Thermal Energy Conversion systems. Flume experiments were conducted under two conditions: Condition 1 was with a fixed riser bottom, and Condition 2 was with a fixed bottom on a mooring platform. The cross-flow acceleration of the riser was measured at different current velocities, and corresponding vibration responses were analyzed. Numerical simulations based on the flume experiments were employed to validate the reliability of the simulation method. Results from the flume experiments revealed vortex-induced resonance in Condition 1 when the flow velocity approached the riser’s natural frequency. In Condition 2, similar vibration responses were observed, with maximum acceleration occurring during flow velocity-induced vortex-induced vibrations. However, at higher flow velocities, the acceleration response showed a decrease followed by an increase, indicating the excitation of higher-order modes. The numerical simulations matched the flume experiments in Condition 1. In Condition 2, while the acceleration response and frequency agreed during vortex-induced resonance, discrepancies arose in the flow velocity that caused vortex-induced vibrations compared to the flume experiments. This study demonstrated the accuracy of numerical simulations in reflecting vortex-induced vibrations of risers, providing a foundation for further research on complex riser systems.

Funder

Science and Technology special fund of Hainan Province of China

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference20 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3