Biomimetic Copper Forest Structural Modification Enhances the Capillary Flow Characteristics of the Copper Mesh Wick

Author:

Luo Jia-Li12,Zhao Fan-Bin23,Xu Mou12,Mo Dong-Chuan12,Lyu Shu-Shen12

Affiliation:

1. School of Materials, Sun Yat-sen University, Shenzhen 518107, China

2. Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Guangzhou 518107, China

3. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

Abstract

In a two-phase heat transfer device, achieving a high capillarity of the wick while reducing flow resistance within a limited space becomes the key to improving the heat dissipation performance. As a commonly used wick structure, mesh is widely employed because of its high permeability. However, achieving the desired capillary performance often requires multiple layers to be superimposed to ensure an adequate capillary, resulting in an increased thickness of the wick. In this study, an ultra-thin biomimetic copper forest structural modification of copper mesh was performed using an electrochemical deposition to solve the contradiction between the permeability and the capillary. The experiments were conducted on a copper mesh to investigate the effects of various conditions on their morphology and capillary performance. The results indicate that the capillary performance of the modified copper mesh improves with a longer deposition time. The capillary pressure drops can reach up to 1400 Pa when using ethanol as the working fluid. Furthermore, the modified copper mesh demonstrates a capillary performance value (ΔPc·K) of 8.44 × 10−8 N, which is 1.7 times higher than that of the unmodified samples. Notably, this enhanced performance is achieved with a thickness of only 142 μm. The capillary limit can reach up to 45 W when the modified copper mesh is only 180 μm. Microscopic flow analysis reveals that the copper forest modified structure maintains the original high permeability of the copper mesh while providing a greater capillary force, thereby enhancing the overall flow characteristics.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3