ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration

Author:

Tariku Fitsum1,Gharib Mombeni Afshin1

Affiliation:

1. BCIT Building Science Centre of Excellence, Burnaby, BC V5G 3H2, Canada

Abstract

The process of urbanization resulting from population growth is causing a transformation of natural landscapes into built environments, and contributing to a significant rise in air and surface temperatures in urban areas, resulting in what is known as the urban heat island (UHI). Ignoring the UHI effect and use of weather data from open fields and airport locations for energy and thermal comfort analysis can lead to over- and underestimation of heating and cooling loads, improper sizing of equipment, inefficiencies in the mechanical systems operation, and occupants’ thermal discomfort. There is a need for computationally efficient urban canopy temperature prediction models that account for the urban morphology and characteristics of the study area. This paper presents the development and application of an artificial neural network (ANN)-based method for generating hourly urban canopy temperature and local wind speed for energy simulation. It was used to predict the urban canopy temperature of a neighborhood in downtown Vancouver and the resulting building energy consumption and indoor temperature in a typical building in the area. The results showed that the UHI effect increased the total cooling energy demand by 23% and decreased the total heating energy consumption by 29%, resulting in an overall negative effect on the total energy demand of the building, which was 18% higher in the urban area. The UHI effect also increased the number of hours of indoor temperature above the cooling set point by 7.6%. The methodology can be applied to determine the urban canopy temperature of neighborhoods in different climate zones and determine the varying urban heat island effects associated with the locations.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) IC-IMPACTS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3