Investigation on Air Ventilation within Idealised Urban Wind Corridors and the Influence of Structural Factors with Numerical Simulations

Author:

Xu Wen1,Zhao Lushuang1,Zhang Yunwei1,Gu Zhaolin1ORCID

Affiliation:

1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Wind corridors are expected to be effective in alleviating the canopy urban heat island effect and air pollution. However, investigations on airflow characteristics within wind corridors, especially the influences of structural factors, are still limited. This current work performed numerical simulations on a group of idealised wind corridor models with different aspect ratios (ARs) and varying heights and/or widths along the corridors. Simulations revealed that the AR value had a vital influence on the wind speed, and an AR value of 0.1 facilitated the best ventilation conditions within the wind corridor. Structural variations along the corridor have a critical influence on ventilation, where the width contraction (contraction structure) and high-rise buildings (protrusion structure) would considerably weaken the wind speed within the corridors. The results suggested that wider and step-up structural design along the corridor should be encouraged in urban wind corridor planning, which would be helpful in promoting ventilation efficiency; but contraction structures should be prevented for primary wind corridor design.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3