A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems

Author:

Athwer Abdulkarim1,Darwish Ahmed1ORCID

Affiliation:

1. School of Engineering, Lancaster University, Lancaster LA1 4YW, UK

Abstract

This paper presents a comprehensive review on the employment of wide bandgap (WBG) semiconductor power devices in wind energy conversion systems (WECSs). Silicon-carbide- (SiC) and gallium-nitride (GaN)-based power devices are highlighted and studied in this review, focusing on their application in the wind energy system. This is due to their premium characteristics such as the operation at high switching frequency, which can reduce the switching losses, and the capability to operate at high temperatures compared with silicon (Si)-based devices. These advantages promote the replacement of the conventional Si-based devices with the WBG semiconductor devices in the new modular converter topologies due to the persistent demand for a more-efficient power converter topology with lower losses and smaller sizes. The main objective of this paper was to provide a comprehensive overview of the WBG power devices commercially available on the market and employed in the modular converter topologies for renewable energy systems. The paper also provides a comparison between the WBG power technologies and the traditional ones based on the Si devices. The paper starts from the conventional modular power converter topology circuits, and then, it discusses the opportunities for integrating the SiC and WBG devices in the modular power converters to improve and enhance the system’s performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference191 articles.

1. Impacts of wind energy on environment: A review;Wang;Renew. Sustain. Energy Rev.,2015

2. Investigation of the Impacts of Large-Scale Wind Power Penetration on the Angle and Voltage Stability of Power Systems;Hossain;IEEE Syst. J.,2012

3. (2021). BP Statistical Review of World Energy Globally Consistent Data on World Energy Markets and Authoritative Publications in the Field of Energy. BP Energy Outlook, 70, 72.

4. Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor;Jung;Nat. Energy,2022

5. Global Wind Energy Council (2022). Global Wind Report 2022, GWEC.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3