Parasitic-Based Model for Characterizing False Turn-On and Switching-Based Voltage Oscillation in Hybrid T-Type Converter

Author:

Babaki Amir1ORCID,Golsorkhi Mohammad Sadegh1ORCID,Christensen Nicklas2,Baharizadeh Mehdi1,Behrendt Stefan3,Beyer Jesco4,Ebel Thomas1ORCID

Affiliation:

1. Centre for Industrial Electronics (CIE), Institute of Mechanical and Electrical Engineering, University of Southern Denmark, 6400 Sonderborg, Denmark

2. Danfoss Drives A/S, 6300 Grasten, Denmark

3. Semikron Danfoss, Husumer Straße 251, 24941 Flensburg, Germany

4. FuE-Zentrum FH Kiel GmbH, Schwentinestr. 24, 24149 Kiel, Germany

Abstract

High frequency and high voltage switching converters utilizing wide bandgap semiconductors are gaining popularity thanks to their compactness and improved efficiency. However, the faster switching requirements gives rise to new challenges. A key issue is the increased oscillation of the drain–source voltage caused by the switching action of the complementary switch in the same phase or change of state of the other phase switches. The voltage stress caused by these oscillations can damage the switch. Furthermore, the high dv/dt during turning-on of one switch might result in false turn-on of the complementary switch due to the miller effect. In this paper, these issues are investigated in a T-type converter through analytical and experimental analysis. Based on the proposed analytical approach, simple and cost-wise solutions utilizing an optimum design of gate driver circuits and circuit layout modifications can be developed to cope with the aforementioned issues. A comprehensive analytical model of the converter with consideration of parasitic capacitances and inductances is developed. By performing sensitivity analysis on the model, the effect of the parasitic parameters on the drain–source voltage oscillation and gate–source voltage amplitude in case of false turn-on is studied. The validity of the model is then assessed through numerical simulations and experimental results.

Funder

EUDP

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3