The Potential of Speech as the Calibration Sound for Level Calibration of Non-Laboratory Listening Test Setups

Author:

Kisić Dominik,Horvat MarkoORCID,Jambrošić KristianORCID,Franček Petar

Abstract

The pandemic of COVID-19 and the resulting countermeasures have made it difficult or impossible to perform listening tests in controlled laboratory environments. This paper examines the possibility of using speech for level calibration of sound reproduction systems used in listening tests performed in non-laboratory conditions, i.e., when such tests are distributed through the means of electronic communication and performed in a home environment. Moreover, a larger pool of potential test subjects can be reached in this manner. The perception of what the “normal” level of reproduced speech should be was examined through a listening experiment by letting the listeners set the level of reproduced speech samples as they saw fit, depending on the used sound reproduction system, the (non)existence of visual stimulus, and the voice of the speaker. The results show that the perception of normal speech level is highly individual when it comes to setting that level by listening to reproduced speech. The interindividual differences between the subjects are considerably larger than the impact of the three main effects. The understanding of what the “normal” level of read speech should be was examined experimentally as well by asking the subjects to read a paragraph of text, depending on the visual stimulus. The results show that the “normal” level of read speech is reasonably consistent and averages at 55 dBA at a normal conversational distance of 1 m, in a room with room acoustics conditions typical for home environment and low background noise, and with the visual stimulus that mimics the interlocutor put within the personal space of the reader. A preliminary proposal is given of a level calibration method for non-laboratory listening experiments based on these results, and some of its aspects that require further research are discussed.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. COVID-19https://www.ecdc.europa.eu/en/covid-19-pandemic

2. Coronavirus Disease (COVID-19) Pandemichttps://www.who.int/emergencies/diseases/novel-coronavirus-2019

3. Acoucou–Acoustic Coursewarehttps://acoucou.org/

4. ACOUCOU Platform to Acquire Professional Skills and Knowledge in the Field of Acoustics;Jaruszewska;Proceedings of the 23rd International Congress on Acoustics,2019

5. lab.js: A free, open, online study builder

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3