Detecting Lombard Speech Using Deep Learning Approach

Author:

Kąkol Krzysztof,Korvel GražinaORCID,Tamulevičius Gintautas,Kostek Bożena

Abstract

Robust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks (CNNs) and various two-dimensional (2D) speech signal representations. To reduce the computational cost and not resign from the 2D representation-based approach, a strategy for threshold-based averaging of the Lombard effect detection results is introduced. The pseudocode of the averaging process is also included. A series of experiments are performed to determine the most effective network structure and the 2D speech signal representation. Investigations are carried out on German and Polish recordings containing Lombard speech. All 2D signal speech representations are tested with and without augmentation. Augmentation means using the alpha channel to store additional data: gender of the speaker, F0 frequency, and first two MFCCs. The experimental results show that Lombard and neutral speech recordings can clearly be discerned, which is done with high detection accuracy. It is also demonstrated that the proposed speech detection process is capable of working in near real-time. These are the key contributions of this work.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noisy Phoneme Recognition Using 2D Convolution Neural Network;2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE);2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3