AAQAL: A Machine Learning-Based Tool for Performance Optimization of Parallel SPMV Computations Using Block CSR

Author:

Ahmed Muhammad,Usman Sardar,Shah Nehad AliORCID,Ashraf M. UsmanORCID,Alghamdi Ahmed MohammedORCID,Bahadded Adel A.ORCID,Almarhabi Khalid AliORCID

Abstract

The sparse matrix–vector product (SpMV), considered one of the seven dwarfs (numerical methods of significance), is essential in high-performance real-world scientific and analytical applications requiring solution of large sparse linear equation systems, where SpMV is a key computing operation. As the sparsity patterns of sparse matrices are unknown before runtime, we used machine learning-based performance optimization of the SpMV kernel by exploiting the structure of the sparse matrices using the Block Compressed Sparse Row (BCSR) storage format. As the structure of sparse matrices varies across application domains, optimizing the block size is important for reducing the overall execution time. Manual allocation of block sizes is error prone and time consuming. Thus, we propose AAQAL, a data-driven, machine learning-based tool that automates the process of data distribution and selection of near-optimal block sizes based on the structure of the matrix. We trained and tested the tool using different machine learning methods—decision tree, random forest, gradient boosting, ridge regressor, and AdaBoost—and nearly 700 real-world matrices from 43 application domains, including computer vision, robotics, and computational fluid dynamics. AAQAL achieved 93.47% of the maximum attainable performance with a substantial difference compared to in practice manual or random selection of block sizes. This is the first attempt at exploiting matrix structure using BCSR, to select optimal block sizes for the SpMV computations using machine learning techniques.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3