Dynamic Characteristics of Reconstituted Silt Influenced by Axial Unloading Intensity and Fine Particle Content

Author:

Meng Fanli,Xia Changqing,Zhu Min,Tong Zhijun,Lu Chengyuan

Abstract

The stress disturbance induced by adjacent construction has a significant impact on the dynamic characteristics of the soil, resulting in complex long-term tunnel settlement under train vibration load. Through a series of dynamic triaxial tests, the effects of different fine particle contents and axial unloading intensities on the permanent axial deformation and excess pore water pressure of reconstituted silt under long-term cyclic loading were investigated. The findings show that as fine particle content in the silt increases, the threshold dynamic stress and failure cycle number decrease at first, then increase, reaching a minimum value at 10% fine particle content. The dynamic characteristics of silt are significantly affected by axial unloading, and the dynamic stress threshold amplitude of a soil sample decreases as the unloading strength increases. The accumulation of silt deformation caused by long-term cyclic load can be effectively controlled by ensuring drainage conditions.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Zhejiang science and technology planning project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3