Performance Evaluation of an Improved ANFIS Approach Using Different Algorithms to Predict the Bonding Strength of Glulam Adhered by Modified Soy Protein–MUF Resin Adhesive

Author:

Nazerian Morteza1ORCID,Naderi Fatemeh1,Papadopoulos Antonios N.2ORCID

Affiliation:

1. Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran

2. Laboratory of Wood Chemistry and Technology, Department of Forestry and Natural Environment, International Hellenic University, GR-661 00 Drama, Greece

Abstract

Despite studies on the potential replacement of synthetic resins by bio-based adhesives such as proteins in recent years, there is still no reliable method for estimating the strength of wood products made using the combined parameters in the literature. This limitation is due to the nonlinear relationship between strength and the combined components. In the present research, the application of artificial intelligence techniques was studied to predict the bonding strength of glulam adhered by protein containing different ratios of MUF (melamine–urea–formaldehyde) resin with different F-to-U/M molar ratios at different press temperatures. For this purpose, the ANFIS artificial intelligence model was used as basic mode or combined with ant colony optimization (ACOR), particle swarm optimization (PSO), differential evaluation (DE) and genetic algorithms (GA) to develop an optimal trained model to predict the bonding strength of glulam based on experimental results. Comparison of the obtained results with the experimental results showed the ability of the above methods to estimate the bonding strength of glulam in a reliable manner. Although the basic ANFIS alone and in combination with other algorithms was not able to achieve an ideal performance prediction to estimate bonding strength, the combination of GA and ANFIS offered an excellent ability compared to the combination of other algorithms combined with ANFIS. Hence, the developed ANFIS-GA model is introduced as the best prediction technique to solve bonding strength problems of laminated products. In addition, using the developed optimal model, a precise attempt was made to show the nature of the parameters used to produce glulam and determine the optimum limit.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3