Application of the Artificial Neural Network to Predict the Bending Strength of the Engineered Laminated Wood Produced Using the Hydrolyzed Soy Protein-Melamine Urea Formaldehyde Copolymer Adhesive

Author:

Nazerian Morteza1ORCID,Naderi Fatemeh1,Papadopoulos Antonios N.2

Affiliation:

1. Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran

2. Laboratory of Wood Chemistry and Technology, Department of Forestry and Natural Environment, International Hellenic University, GR-661 00 Drama, Greece

Abstract

The artificial neural network (ANN) was used to predict the modulus of rupture (MOR) of the laminated wood products adhered by melamine/urea formaldehyde (MUF) resin with different formaldehyde to melamine/urea molar ratios combined with different weight ratios of the protein adhesive resulting from the alkaline treatment (NaOH) of the soybean oil meal to MUF resin pressed at different temperatures according to the central composite design (CCD). After making the boards and performing the mechanical test to measure the MOR, based on experimental data, different statistics such as determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and sum of squares error (SSE) were determined, and then the suitable algorithm was selected to determine the estimated values. After comparing estimated values with the experimental values, the direct and interactive effects of the independent variables on MOR were determined. The results indicated that using suitable algorithms to train the ANN well, a very good estimate of the bending strength of the laminated wood products can be offered with the least error. In addition, based on the estimated and measured strengths and FTIR and TGA diagnostic analyses, it was found that the replacement of the MUF resin by the protein bio-based adhesive when using low F to M/U molar ratios, the MOR is maximized if a high range of temperature is used during the press.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference64 articles.

1. Whole soybean protein extraction processes: A review;Preece;Innov. Food Sci. Emerg. Technol.,2017

2. Investigation of an ambient temperature-curable soy-based adhesive for wood composites;Zheng;Int. J. Adhes. Adhes.,2019

3. Lignin-based copolymer adhesives for composite wood panels—A review;Ang;Int. J. Adhes. Adhes.,2019

4. Food waste for livestock feeding: Feasibility, safety, and sustainability implications;Dou;Glob. Food Secur.,2018

5. Pizzi, A., and Mittal, K.L. (2018). Handbook of Adhesive Technology, CRC Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3