High Latitude Dust Transport Altitude Pattern Revealed from Deposition on Snow, Svalbard

Author:

Kavan JanORCID,Láska KamilORCID,Nawrot AdamORCID,Wawrzyniak TomaszORCID

Abstract

High Latitude Dust (HLD) deposition in the surface snow layer in two distant locations in Svalbard (Hornsund and Pyramiden) were collected during the June/July 2019 field campaign and examined in the laboratory. Despite the differences in their climate and topography, both locations are characterised by very similar spatial patterns of the deposition. On the one hand, strong linear negative relationship between the altitude of the sample taken and its concentration was found in low altitude (below 300 m a.s.l.), suggesting a strong influence of local HLD sources. On the other hand, almost constant concentrations were found at higher elevated sampling sites (above 300 m a.s.l.). This suggests a predominantly long-range transport in high altitude areas. The importance of local sources in the lower altitude corresponds well with the generally higher concentrations of HLD in the Pyramiden area. This region has a drier, continental climate and more deglaciated bare land surfaces, which favour more sediment to be uplifted in comparison with the more maritime climate of Hornsund area in the southern part of Svalbard. The spatial division between the local and long-range transport is supported by the proportion of certain lithophile elements in the altitude gradient.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3