Newly identified climatically and environmentally significant high-latitude dust sources
-
Published:2022-09-14
Issue:17
Volume:22
Page:11889-11930
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Meinander OutiORCID, Dagsson-Waldhauserova PavlaORCID, Amosov Pavel, Aseyeva Elena, Atkins Cliff, Baklanov Alexander, Baldo ClarissaORCID, Barr Sarah L., Barzycka Barbara, Benning Liane G.ORCID, Cvetkovic Bojan, Enchilik Polina, Frolov DenisORCID, Gassó SantiagoORCID, Kandler Konrad, Kasimov NikolayORCID, Kavan Jan, King James, Koroleva Tatyana, Krupskaya Viktoria, Kulmala MarkkuORCID, Kusiak Monika, Lappalainen Hanna K., Laska Michał, Lasne JeromeORCID, Lewandowski Marek, Luks BartłomiejORCID, McQuaid James B.ORCID, Moroni Beatrice, Murray BenjaminORCID, Möhler OttmarORCID, Nawrot Adam, Nickovic SlobodanORCID, O’Neill Norman T., Pejanovic Goran, Popovicheva Olga, Ranjbar KeyvanORCID, Romanias ManolisORCID, Samonova Olga, Sanchez-Marroquin AlbertoORCID, Schepanski Kerstin, Semenkov IvanORCID, Sharapova Anna, Shevnina ElenaORCID, Shi ZongboORCID, Sofiev Mikhail, Thevenet Frédéric, Thorsteinsson ThrosturORCID, Timofeev Mikhail, Umo Nsikanabasi SilasORCID, Uppstu Andreas, Urupina Darya, Varga György, Werner Tomasz, Arnalds Olafur, Vukovic Vimic Ana
Abstract
Abstract. Dust particles from high latitudes have a potentially large local,
regional, and global significance to climate and the environment as
short-lived climate forcers, air pollutants, and nutrient sources.
Identifying the locations of local dust sources and their emission,
transport, and deposition processes is important for understanding the
multiple impacts of high-latitude dust (HLD) on the Earth's systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to
1 concerning globally best productive sources, using the Global Sand and
Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica
and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with
higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential
(SI ≥0.9) for dust emission cover >1 670 000 km2,
>560 000 km2, and >240 000 km2,
respectively. In the Arctic HLD region (≥60∘ N), land area
with SI ≥0.5 is 5.5 % (1 035 059 km2), area with SI ≥0.7 is
2.3 % (440 804 km2), and area with SI ≥0.9 is 1.1 % (208 701 km2). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region
greatly depend on weather conditions. Our spatial dust source distribution
analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50∘ N, with
a “transitional HLD-source area” extending at latitudes 50–58∘ N
in Eurasia and 50–55∘ N in Canada and a “cold HLD-source area” including areas north of 60∘ N in Eurasia and north of
58∘ N in Canada, with currently “no dust source” area between the
HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global
dust emission originated from the high-latitude regions. About 57 % of the
dust deposition in snow- and ice-covered Arctic regions was from HLD
sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions
favorable for dust emission, which increases the probability of dust storms.
Our study provides a step forward to improve the representation of HLD in
models and to monitor, quantify, and assess the environmental and climate
significance of HLD.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference246 articles.
1. Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019. 2. Achterberg, E. P., Moore, C. M., Henson, S. A., Steigenberger, S., Stohl,
A., Eckhardt, S., Avendano, L. C., Cassidy, M., Hembury, D., Klar, J. K.,
Lucas, M. I., Macey, A. I., Marsay, C. M., and Ryan-Keogh, T. J.: Natural
iron fertilization by the Eyjafjallajokull volcanic eruption, Geophys. Res. Lett., 40, 921–926, https://doi.org/10.1002/grl.50221, 2013. 3. Achterberg, E. P., Steigenberger, S., Marsay, C. M., LeMoigne, F. A. C.,
Painter, S. C., Baker, A. R., Connelly, D. P., Moore, C. M., Tagliabue, A.,
and Tanhua, T.: Iron Biogeochemistry in the High Latitude North Atlantic
Ocean, Scientific Reports, 8, 1283, https://doi.org/10.1038/s41598-018-19472-1, 2018. 4. AMAP: Black Carbon and Ozone as Arctic Climate Forcers, Arctic Monitoring
and Assessment Programme (AMAP), Oslo, 116 pp., ISBN 978-82-7971-092-9, 2015. 5. Amino, T., Iizuka, Y., Matoba, S., Shimada, R., Oshima, N., Suzuki, T., Ando, T., Aoki, T., and Fujita, K.: Increasing dust emission from ice free terrain in southeastern Greenland since 2000, Polar Sci., 27, 100599,
https://doi.org/10.1016/j.polar.2020.100599, 2020.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|