Abstract
The Negev Desert in Israel is susceptible to frequent atmospheric events of high dust loading which have been linked with negative human health outcomes, including cardiovascular and respiratory distress. Previous research suggests that the highest levels of dust over the region occur during an atmospheric pattern with a cyclone situated over the eastern Mediterranean. This Cyprus Low can bring unsettled weather and strong westerly winds over the Negev. However, while the overall pattern associated with dust events in the Negev Desert is generally well-understood, it remains unclear why days with seemingly similar weather patterns result in different levels of atmospheric dust. Thus, the goal of this study is to better differentiate the atmospheric patterns during dust events over the Negev. Using PM10 data collected in Be’er Sheva, Israel, from 2000 to 2015 in concert with 72-h HYSPLIT back trajectories at three different height levels (surface, 200 m, 500 m), we examine the source region, trajectory groups using a K-Means clustering procedure, and overall synoptic pattern during dust events. Further, we use sea-level pressure data across the region to determine how cyclone strength and location impact dust events in Be’er Sheva. We find that the highest levels of atmospheric dust in the Negev are associated with the Cyprus Low pattern, and air traversing Libya seems to play an especially important role, likely due to the country’s arid surface cover. Cyclone strength is also a critical factor, as lower sea-level pressure results in more severe dust events. A better understanding of the atmospheric features associated with dust events over the Negev Desert will hopefully aid in forecasting these occurrences across the region.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献