Deep multi-task learning for early warnings of dust events implemented for the Middle East

Author:

Sarafian Ron,Nissenbaum Dori,Raveh-Rubin ShiraORCID,Agrawal Vikhyat,Rudich YinonORCID

Abstract

AbstractEvents of high dust loading are extreme meteorological phenomena with important climate and health implications. Therefore, early forecasting is critical for mitigating their adverse effects. Dust modeling is a long-standing challenge due to the multiscale nature of the governing meteorological dynamics and the complex coupling between atmospheric particles and the underlying atmospheric flow patterns. While physics-based numerical modeling is commonly being used, we propose a meteorological-based deep multi-task learning approach for forecasting dust events. Our approach consists of forecasting the local PM10 (primary task) measured in situ, and simultaneously to predict the satellite-based regional PM10 (auxiliary task); thus, leveraging valuable information from a correlated task. We use 18 years of regional meteorological data to train a neural forecast model for dust events in Israel. Twenty-four hours before the dust event, the model can detect 76% of the events with even higher predictability of winter and spring events. Further analysis shows that local dynamics drive most misclassified events, meaning that the coherent driving meteorology in the region holds a predictive skill. Further, we use machine-learning interpretability methods to reveal the meteorological patterns the model has learned, thus highlighting the important features that govern dust events in the Middle East, being primarily lower-tropospheric winds, and Aerosol Optical Depth.

Funder

Council for Higher Education

Maggie Kaplan Research Fund, Helen Kimmel Center for Planetary Science

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3