Author:
Zhao Yu,Fu Liang,Yang Cheng-Fang,Chen Xiang-Fu
Abstract
An extreme snowstorm event that occurred over Heilongjiang and Jilin Provinces on 24–26 November 2013 was related to a cyclone characterized by a back-bent occluded front structure. This study investigates the structure of the back-bent occluded front and snowfall mechanism using multiple observations and NCEP/NCAR 1° × 1° reanalysis data in concert with the HYSPLIT model. The main results show that the extreme event was more synoptically governed by the outbreak of the polar vortex and moisture anomaly of the East Sea. The cyclone occurred just ahead of the 500-hPa merged deep trough, and then developed under the effect of the positive vorticity advection ahead of the 500-hPa trough and intense divergence of the upper-level jet. The south-southwest wind strengthened obviously after the merger of the southern and northern branch troughs, which was the main reason behind the cyclone moving northward. The moisture mainly originated from the Sea of Japan, insofar as that dry and cold air in the lower troposphere over the western mainland moistened obviously as it turned southward and passed over the Bohai Sea and the Sea of Japan, supplying abundant moisture for the snowstorm event. The intensity of moisture transport depended on the location and intensity of the cyclone. When the cyclone developed, the dry air continuously intruded into the cyclone’s center, and made a conveyor belt of warm air wrap around it. The dry air gradually changed from descending to ascending motion as it moved ahead of the westerly trough, while the moist air in the northern part of the cyclone moved to the west and south and incorporated into the south of the cyclone center. Warm and moist air was lifted and arrived in the northwestern part of the cyclone after the occluded front’s formation. Frontogenesis within the comma head was enhanced evidently owing to the rotation and deformation. The convergence between the southeast and northeast winds resulted in intense frontogenesis, leading to the enhancement of the front-scale ascent. Strong ascent formed in the comma head of the cyclone, which resulted in intense snowfall.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference48 articles.
1. Overview of advances in synoptic meteorology: Four stages of development in conceptual models of frontal cyclones
2. Ideal numerical simulations for influence of the land surface and ambient airflow on the frontal cyclone development;Wu;Chin. J. Geophys.,2018
3. Occluded Fronts and the Occlusion Process: A Fresh Look at Conventional Wisdom
4. A preliminary investigation on causes of the catastrophic snowstorm in March, 2007 in the northeastern parts of China;Sun;Acta Meteorol. Sin.,2009
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献