First Spaceborne Version of Velocity-Azimuth Display Technique for Wind Field Retrieval on Cloud and Precipitation Radar

Author:

Wang YuexiaORCID,Wei Ming,Shi Quan

Abstract

Cloud and precipitation radar mounted on a polar orbiting satellite opens up a new opportunity for global wind observation to improve numerical weather forecasting and prevent weather disasters. However, no related works have been done to retrieve the wind field for spaceborne cloud and precipitation radar. This is mainly because the high-speed motion of satellites makes wind field retrieval complex. This paper developed the first spaceborne version of the velocity–azimuth display (VAD) technique for wind field retrieval, which was originally created for ground-based radar. After derivation of VAD for spaceborne radar, we found that the product of the azimuth of the radar beam and its first harmonic was introduced into the Fourier series of radar radial velocity due to the motion of the satellites. The wind retrieval equations were developed by considering the effects of satellite motion and conical scanning strategy of radar. Numerical simulations of the spaceborne radar showed that the proposed VAD method provided a mean vertical profile of the horizontal wind with high vertical resolution over a large observation swath. Validations on airborne radar data with the same conical scan strategy as the spaceborne radar were carried out to capture the average wind structure in one hurricane event. The real data results demonstrated that the wind-retrieved results by the proposed method were consistent with the ground truth data, indicating the potential use of our proposal for spaceborne radar.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3