Retrieval of Sea Surface Wind Fields Using Multi-Source Remote Sensing Data

Author:

Hu TangaoORCID,Li YueORCID,Li Yao,Wu Yiyue,Zhang Dengrong

Abstract

Timely and accurate sea surface wind field (SSWF) information plays an important role in marine environmental monitoring, weather forecasting, and other atmospheric science studies. In this study, a piecewise linear model is proposed to retrieve SSWF information based on the combination of two different satellite sensors (a microwave scatterometer and an infrared scanning radiometer). First, the time series wind speed dataset, extracted from the HY-2A satellite, and the brightness temperature dataset, extracted from the FY-2E satellite, were matched. The piecewise linear regression model with the highest R2 was then selected as the best model to retrieve SSWF information. Finally, experiments were conducted with the Usagi, Fitow, and Nari typhoons in 2013 to evaluate accuracy. The results show that: (1) the piecewise linear model is successfully established for all typhoons with high R2 (greater than 0.61); (2) for all three cases, the root mean square error () and mean bias error (MBE) are smaller than 2.2 m/s and 1.82 m/s, which indicates that it is suitable and reliable for SSWF information retrieval; and (3) it solves the problem of the low temporal resolution of HY-2A data (12 h), and inherits the high temporal resolution of the FY-2E data (0.5 h). It can provide reliable and high temporal SSWF products.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3