Impacts of Regional Transport and Meteorology on Ground-Level Ozone in Windsor, Canada

Author:

Zhang Tianchu,Xu Xiaohong,Su Yushan

Abstract

This study investigated impacts of regional transport and meteorology on ground-level ozone (O3) in the smog season (April–September) during 1996–2015 in Windsor, Ontario, Canada. Data from five upwind stations in the US, which are within 310 km (i.e., Allen Park and Lansing in Michigan, Erie, National Trail School, and Delaware in Ohio), were included to assess the regional characteristics of O3. The five US stations showed high degrees of similarity with O3 concentrations in Windsor, with overall strong correlations (r = 0.567–0.876 for hourly O3 and r = 0.587–0.92 for 8 h max O3 concentrations) and a low degree of divergence, indicating that O3 pollution in the study area shares regional characteristics. Meteorological conditions played important roles in O3 levels in Windsor. High O3 concentrations were associated with southerly and southwesterly air mass from which polluted and hot air mass was transported and that enhanced local photochemical O3 production. In contrast, northerly flows brought in clean, cool, and dry air mass, and led to low O3 concentrations. Strong correlations were found between numbers of days with 8 h max O3 concentrations greater than 70 ppb and numbers of days with daily max temperature greater than 30 °C, as well as between daily max temperatures and 8 h max O3 concentrations. Nearly half (45%) of the high O3 days (≥90th percentile) occurred in dry tropical weather during 1996–2015, and the 90th percentile 8 h max O3 was associated with dry tropical weather. Occurrences of both southerly flow hours and dry tropical weather type in the smog season increased during the study period. If there were more hot and dry days in the next few decades due to climate change, the effect of emission control on reducing peak O3 values would be diminished. Therefore, continued regional and international efforts are essential to control precursors’ emissions and to mitigate O3 pollution in Windsor.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference45 articles.

1. Temporal variations and trend of ground-level ozone based on long-term measurements in Windsor, Canada

2. Meteorology and Climate Influences on Tropospheric Ozone: a Review of Natural Sources, Chemistry, and Transport Patterns

3. Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: Causes of temporal and spatial variation

4. Long-Range Transport of Ground Level Ozone and Its Precursors: Assessment of Methods to Quantify Transboundary Transport within the Northeastern United States and Eastern Canadahttp://www3.cec.org/islandora/en/item/2185-long-range-transport-ground-level-ozone-and-its-precursors-en.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3