The Influence of Meteorology Initialization on Ozone Forecasting in the Great Lakes Region during MOOSE Study

Author:

Mashayekhi Rabab1,Stroud Craig A.2,Zhang Junhua2,Nikiema Oumarou1,Trotechaud Sandrine1ORCID

Affiliation:

1. Meteorological Service of Canada, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, QC H9P 1J3, Canada

2. Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada

Abstract

This study investigates the influence of meteorology initialization on surface ozone prediction in the Great Lakes region using Canada’s operational air quality model (GEM-MACH) at a 2.5 km horizontal resolution. Two different initialization techniques are compared, and it is found that the four-dimensional incremental analysis updating (IAU) method yields improved model performance for surface ozone prediction. The IAU run shows better ozone regression line statistics (y = 0.7x + 14.9, R2 = 0.2) compared to the non-IAU run (y = 0.6x + 23.1, R2 = 0.1), with improved MB and NMB values (3.9 ppb and 8.9%, respectively) compared to the non-IAU run (4.1 ppb and 9.3%). Furthermore, analyzing ozone prediction sensitivity to model initialization time reveals that the 18z initialization leads to enhanced performance, particularly during high ozone exceedance days, with an improved regression slope of 0.9 compared to 0.7 for the 00z and 12z runs. The MB also improves to −0.2 ppb in the 18z run compared to −2.8 ppb and −3.9 ppb for the 00z and 12z runs, respectively. The analysis of meteorological fields reveals that the improved ozone predictions at 18z are linked to a more accurate representation of afternoon wind speed. This improvement enhances the transport of ozone, contributing to the overall improvement in ozone predictions.

Funder

Environment and Climate Change Canada

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3