Abstract
Ammonia (NH3), the most prevalent alkaline gas in the atmosphere, plays a significant role in PM2.5 formation, atmospheric chemistry, and new particle formation. This paper reviews quantification of [NH3] through measurements, satellite-remote-sensing, and modeling reported in over 500 publications towards synthesizing the current knowledge of [NH3], focusing on spatiotemporal variations, controlling processes, and quantification issues. Most measurements are through regional passive sampler networks. [NH3] hotspots are typically over agricultural regions, such as the Midwest US and the North China Plain, with elevated concentrations reaching monthly averages of 20 and 74 ppbv, respectively. Topographical effects dramatically increase [NH3] over the Indo-Gangetic Plains, North India and San Joaquin Valley, US. Measurements are sparse over oceans, where [NH3] ≈ a few tens of pptv, variations of which can affect aerosol formation. Satellite remote-sensing (AIRS, CrIS, IASI, TANSO-FTS, TES) provides global [NH3] quantification in the column and at the surface since 2002. Modeling is crucial for improving understanding of NH3 chemistry and transport, its spatiotemporal variations, source apportionment, exploring physicochemical mechanisms, and predicting future scenarios. GEOS-Chem (global) and FRAME (UK) models are commonly applied for this. A synergistic approach of measurements↔satellite-inference↔modeling is needed towards improved understanding of atmospheric ammonia, which is of concern from the standpoint of human health and the ecosystem.
Funder
National Science Foundation
National Aeronautics and Space Administration
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献