Mechanisms of Convection Initiation in the Southwestern Xinjiang, Northwest China: A Case Study

Author:

Abulikemu AbuduwailiORCID,Ming Jie,Xu XinORCID,Zhuge Xiaoyong,Wang Yuan,Zhang Yunhui,Zhang Shushi,Yu Bixin,Aireti Mangsuer

Abstract

The mechanism of convection initiation (CI) occurring in the Southwest Xinjiang, Northwest China is investigated using quantitative budget analysis of vertical momentum for the first time. The Weather Research and Forecasting (WRF) model is used to reproduce and analyze the CI events. The observations showed that many CIs occurred continuously, with an intense mesoscale convective system eventually forming. The overall features of the CIs were well captured by the simulation. Lagrangian vertical momentum budgets, in which the vertical acceleration was decomposed into dynamic and buoyant components, were performed along the backward trajectories of air parcels within two convective cells. The results showed that the buoyant acceleration is the major contributor in both the slow and rapid lifting period of the CI, while the dynamic acceleration also showed a considerably positive effect only during the rapid lifting period. The buoyant acceleration during the slow lifting period was due to the warm advection generated by the radiative heating near the mountainous area on the south side of Tarim Basin in the afternoon. The buoyant acceleration during the rapid lifting period was from the latent heat release within the convective cell. Further decomposition of the dynamic acceleration showed that the vertical twisting related to the vertical shear of horizontal wind almost completely dominated the dynamic acceleration, while the horizontal curvature and extension showed very weak contribution. These findings provide some new insights into the roles of buoyant and dynamic forcing in the mechanism of CI in Southwest Xinjiang.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3