A Review of Convection Initiation and Motivation for IHOP_2002

Author:

Weckwerth Tammy M.1,Parsons David B.1

Affiliation:

1. Earth Observing Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The International H2O Project (IHOP_2002) included four complementary research components: quantitative precipitation forecasting, convection initiation, atmospheric boundary layer processes, and instrumentation. This special issue introductory paper will review the current state of knowledge on surface-forced convection initiation and then describe some of the outstanding issues in convection initiation that partially motivated IHOP_2002. Subsequent papers in this special issue will illustrate the value of combining varied and complementary datasets to study convection initiation in order to address the outstanding issues discussed in this paper and new questions that arose from IHOP_2002 observations. The review will focus on convection initiation by boundaries that are prevalent in the U.S. southern Great Plains. Boundary layer circulations, which are sometimes precursors to deep convective development, are clearly observed by radar as reflectivity fine lines and/or convergence in Doppler velocity. The corresponding thermodynamic distribution, particularly the moisture field, is not as readily measured. During IHOP_2002, a variety of sensors capable of measuring atmospheric water vapor were brought together in an effort to sample the three-dimensional time-varying moisture field and determine its impact on forecasting convection initiation. The strategy included examining convection initiation with targeted observations aimed at sampling regions forecast to be ripe for initiation, primarily along frontal zones, drylines, and their mergers. A key aspect of these investigations was the combination of varied moisture measurements with the detailed observations of the wind field, as presented in many of the subsequent papers in this issue. For example, the high-resolution measurements are being used to better understand the role of misocyclones on convection initiation. The analyses are starting to elucidate the value of new datasets, including satellite products and radar refractivity retrievals. Data assimilation studies using some of the state-of-the-art datasets from IHOP_2002 are already proving to be quite promising.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3