A Coherent Wideband Acoustic Source Localization Using a Uniform Circular Array

Author:

Jiang Meng1ORCID,Nnonyelu Chibuzo Joseph1ORCID,Lundgren Jan1ORCID,Thungström Göran1ORCID,Sjöström Mårten1ORCID

Affiliation:

1. Sensible Things that Communicate Research Centre, Mid Sweden University, 852 30 Sundsvall, Sweden

Abstract

In modern applications such as robotics, autonomous vehicles, and speaker localization, the computational power for sound source localization applications can be limited when other functionalities get more complex. In such application fields, there is a need to maintain high localization accuracy for several sound sources while reducing computational complexity. The array manifold interpolation (AMI) method applied with the Multiple Signal Classification (MUSIC) algorithm enables sound source localization of multiple sources with high accuracy. However, the computational complexity has so far been relatively high. This paper presents a modified AMI for uniform circular array (UCA) that offers reduced computational complexity compared to the original AMI. The complexity reduction is based on the proposed UCA-specific focusing matrix which eliminates the calculation of the Bessel function. The simulation comparison is done with the existing methods of iMUSIC, the Weighted Squared Test of Orthogonality of Projected Subspaces (WS-TOPS), and the original AMI. The experiment result under different scenarios shows that the proposed algorithm outperforms the original AMI method in terms of estimation accuracy and up to a 30% reduction in computation time. An advantage offered by this proposed method is the ability to implement wideband array processing on low-end microprocessors.

Funder

Swedish Knowledge Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3