Closed-Form DoA Solution for Co-Centered Orthogonal Microphone Arrays Based on Multilateration Equations

Author:

Zengin Kazım1ORCID,Yeşildirek Aydın2ORCID

Affiliation:

1. Department of Mechatronics Engineering, Kirklareli University, Kırklareli 39100, Turkey

2. Department of Mechatronics Engineering, Yildiz Technical University, Istanbul 34349, Turkey

Abstract

This study proposes a closed-form direction-of-arrival (DoA) solution derived from multilateration equations for microphone arrays of co-centered and orthogonal pairs. The generalized cross-correlation phase transform (GCC-Phat) algorithm is used to obtain the time-difference-of-arrival (TDoA) values. Simulation studies have shown the success of our proposed method compared to existing DoA methods in the literature by varying the sampling frequency of the sound signal, inter-microphone distances, and the source distance. The results from the simulation are validated by the measurements from our experiments. Our proposed solution gives better results than the far-field solution against the angle error, which is more pronounced at incidence angles smaller than 15°. These angle errors, which approach 3° using the far-field method, are reduced to less than 0.5 degrees using our proposed solution. Our solution also gives more stable results against TDoA measurement errors. Our proposed solution achieves a 66% improvement for azimuth angle and 5.88% improvement for elevation angle compared to the simulation results in the absence of TDoA measurement error, outperforming the far-field approach. When normally distributed sampling error is added to TDoA measurements, with a standard deviation of three samples, our proposed solution achieves a 41% improvement for azimuth angle and a 5.44% improvement for elevation angle. In our field measurements, an absolute mean error of 0.94 degrees was observed with our proposed method for azimuth angle. It is shown to be a more stable and faster solution method for real-time applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3