Recent Developments in the Applications of GO/rGO-Based Biosensing Platforms for Pesticide Detection

Author:

Gopal Geetha1,Roy Namrata1,Mukherjee Amitava1ORCID

Affiliation:

1. Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India

Abstract

Pesticides are often used in different applications, including agriculture, forestry, aquaculture, food industry, etc., for the purpose of controlling insect pests and weeds. The indiscriminate usage of pesticides poses a massive threat to food, environmental, and human health safety. Hence, the fabrication of a sensitive and reliable sensor for the detection of pesticide residues in agro products and environmental samples is a critical subject to be considered. Recently, the graphene family including graphene oxide (GO) and reduced graphene oxide (rGO) have been frequently employed in the construction of sensors owing to their biocompatibility, high surface-area-to-volume ratio, and excellent physiochemical, optical, and electrical properties. The integration of biorecognition molecules with GO/rGO nanomaterials offers a promising detection strategy with outstanding repeatability, signal intensity, and low background noise. This review focuses on the latest developments (2018 to 2022) in the different types of GO/rGO-based biosensors, such as surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and electrochemical-based techniques, among other, for pesticide analysis. The critical discussions on the advantages, limitations, and sensing mechanisms of emerging GO/rGO-based biosensors are also highlighted. Additionally, we explore the existing hurdles in GO/rGO-based biosensors, such as handling difficult biological samples, reducing the total cost, and so on. This review also outlines the research gaps and viewpoints for future innovations in GO/rGO-based biosensors for pesticide determination mainly in areas with insufficient resources.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3