Assessment of pesticides in surface water samples from Swedish agricultural areas by integrated bioanalysis and chemical analysis

Author:

Lundqvist JohanORCID,von Brömssen Claudia,Rosenmai Anna Kjerstine,Ohlsson Åsa,Le Godec Theo,Jonsson Ove,Kreuger Jenny,Oskarsson Agneta

Abstract

Abstract Background Pesticide residue contamination of surface water in agricultural areas can have adverse effects on the ecosystem. We have performed an integrated chemical and bioanalytical profiling of surface water samples from Swedish agricultural areas, aiming to assess toxic activity due to presence of pesticides. A total of 157 water samples were collected from six geographical sites with extensive agricultural activity. The samples were chemically analyzed for 129 commonly used pesticides and transformation products. Furthermore, the toxicity was investigated using in vitro bioassays in the water samples following liquid–liquid extraction. Endpoints included oxidative stress response (Nrf2 activity), estrogen receptor (ER) activity, and aryl hydrocarbon receptor (AhR) activity. The bioassays were performed with a final enrichment factor of 5 for the water samples. All bioassays were conducted at non-cytotoxic conditions. Results A total of 51 pesticides and transformation products were detected in the water samples. Most of the compounds were herbicides, followed by fungicides, insecticides and transformation products. The highest total pesticide concentration in an individual sample was 39 µg/L, and the highest median total concentration at a sample site was 1.1 µg/L. The largest number of pesticides was 31 in a single sample. We found that 3% of the water samples induced oxidative stress response, 23% of the samples activated the estrogen receptor, and 77% of the samples activated the aryl hydrocarbon receptor. Using Spearman correlation coefficients, a statistically significant correlation was observed between AhR and ER activities, and AhR activity was strongly correlated with oxidative stress in samples with a high AhR activity. Statistically significant relationships were observed between bioactivities and individual pesticides, although the relationships are probably not causal, due to the low concentrations of pesticides. Co-occurrence of non-identified chemical pollutants and naturally occurring toxic compounds may be responsible for the induced bioactivities. Conclusions This study demonstrated that integrated chemical analysis and bioanalysis can be performed in water samples following liquid/liquid extraction with a final enrichment factor of 5. AhR and ER activities were induced in water samples from agricultural areas. The activities were presumably not caused by the occurrence of pesticides, but induced by other anthropogenic and natural chemicals.

Funder

Svenska Forskningsrådet Formas

Sveriges Lantbruksuniversitet

Kungl. Skogs- och Lantbruksakademien

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3