Cobalt and Iron Phthalocyanine Derivatives: Effect of Substituents on the Structure of Thin Films and Their Sensor Response to Nitric Oxide

Author:

Klyamer Darya1ORCID,Shao Wenping2,Krasnov Pavel3ORCID,Sukhikh Aleksandr1ORCID,Dorovskikh Svetlana1,Popovetskiy Pavel1,Li Xianchun2,Basova Tamara1ORCID

Affiliation:

1. Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia

2. School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China

3. International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk 660074, Russia

Abstract

In this work, we study the effect of substituents in cobalt(II) and iron(II) phthalocyanines (CoPcR4 and FePcR4 with R = H, F, Cl, tBu) on the structural features of their films, and their chemi-resistive sensor response to a low concentration of nitric oxide. For the correct interpretation of diffractograms of phthalocyanine films, structures of CoPcCl4 and FePcCl4 single crystals were determined for the first time. Films were tested as active layers for the determination of low concentrations of NO (10–1000 ppb). It was found that the best sensor response to NO was observed for the films of chlorinated derivatives MPcCl4 (M = Co, Fe), while the lowest response was in the case of MPc(tBu)4 films. FePcCl4 films exhibited the maximal response to NO, with a calculated limit of detection (LOD) of 3 ppb; the response and recovery times determined at 30 ppb of NO were 30 s and 80 s, respectively. The LOD of a CoPcCl4 film was 7 ppb. However, iron phthalocyanine films had low stability and their sensitivity to NO decreased rapidly over time, while the response of cobalt phthalocyanine films remained stable for at least several months. In order to explain the obtained regularities, quantum chemical calculations of the binding parameters between NO and phthalocyanine molecules were carried out. It was shown that the binding of NO to the side atoms of phthalocyanines occurred through van der Waals forces, and the values of the binding energies were in direct correlation with the values of the sensor response to NO.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3