Electron Donating Functional Polymer Dielectrics to Reduce the Threshold Voltage of n‐Type Organic Thin‐Film Transistors

Author:

Ronnasi Bahar1,King Benjamin1,Brixi Samantha1,Swaraj Sufal2,Niskanen Jukka13,Lessard Benoît H.14ORCID

Affiliation:

1. Department of Chemical and Biological Engineering University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada

2. SOLEIL Synchrotron L'Orme des Merisiers Départementale 128 Saint‐Aubin 91190 France

3. Department of Chemical and Metallurgical Engineering Aalto University Kemistintie 1 Espoo 02150 Finland

4. School of Electrical Engineering and Computer Science University of Ottawa 800 King Edward Ave. Ottawa Ontario K1N 6N5 Canada

Abstract

AbstractLow‐cost and high‐performance electronics based on synthetically simple materials are required to fuel the deployment of smart packaging and wearable electronics. Metal phthalocyanines (MPcs) are promising semiconductors for use in n‐type organic thin film transistors (OTFTs) but often require high operating voltages. The first silicon phthalocyanine‐based OTFT with a polymer dielectric is reported as an alternative to traditional metal oxide dielectrics. Incorporating poly(methyl methacrylate) (PMMA) as the dielectric successfully reduces the threshold voltage (VT) of bispentafluorophenoxy SiPc (F10‐SiPc) from 14.9V to 7.3V while retaining high mobility. Further reduction in VT is obtained by using copolymers and blends of PMMA and dimethylamino ethyl methacrylate (DMAEMA)‐containing polymers, where a higher molar fraction of DMAEMA leads to a consistent drop in VT to ‐0.7 V. The electron‐donating groups of the tertiary amines in the DMAEMA show clear interfacial doping of the semiconductor, reducing the voltage required to populate the dielectric/semiconductor interface with charge carriers and turn on the device. Blending trace amounts of DMAEMA‐containing copolymers with PMMA proves to be an effective strategy for reducing the VT while keeping the charge mobility high, unlike when using pure copolymers with elevated DMAEMA content. Time of flight secondary ion mass spectroscopy (ToF‐SIMS) and X‐ray photoelectron spectroscopy (XPS) demonstrate that the DMAEMA‐containing copolymer is floating to the surface of the PMMA blend at the dielectric–semiconductor interface, which explains the reduced VT. Synchrotron scanning transmission X‐ray microscopy (STXM) demonstrates that PMMA promotes a more edge‐on orientation of F10‐SiPc films, compared to the more face‐on orientation when deposited on the DMAEMA containing copolymer. This study demonstrates a straightforward process for designing dielectric polymers and their blends for the reduction in VT for n‐type OTFTs.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3