A Honey Badger Optimization for Minimizing the Pollutant Environmental Emissions-Based Economic Dispatch Model Integrating Combined Heat and Power Units

Author:

El-Sehiemy RagabORCID,Shaheen AbdullahORCID,Ginidi AhmedORCID,Elhosseini MostafaORCID

Abstract

Traditionally, the Economic Dispatch Model (EDM) integrating Combined Heat and Power (CHP) units aims to reduce fuel costs by managing power-only, CHP, and heat-only units. Today, reducing pollutant emissions to the environment is of paramount concern. This research presents a novel honey badger optimization algorithm (HBOA) for EDM-integrated CHP units. HBOA is a novel meta-heuristic search strategy inspired by the honey badger’s sophisticated hunting behavior. In HBOA, the dynamic searching activity of the honey badger, which includes digging and honing, is separated into exploration and exploitation phases. In addition, several modern meta-heuristic optimization algorithms are employed, which are the African Vultures Algorithm (AVO), Dwarf Mongoose Optimization Algorithm (DMOA), Coot Optimization Algorithm (COA), and Beluga Whale Optimization Algorithm (BWOA). These algorithms are applied in a comparative manner considering the seven-unit test system. Various loading levels are considered with different power and heat loading. Four cases are investigated for each loading level, which differ based on the objective task and the consideration of power losses. Moreover, considering the pollutant emissions minimization objective, the proposed HBOA achieves reductions, without loss considerations, of 75.32%, 26.053%, and 87.233% for the three loading levels, respectively, compared to the initial case. Moreover, considering minimizing pollutant emissions, the suggested HBOA achieves decreases of 75.32%, 26.053%, and 87.233%, relative to the baseline scenario, for the three loading levels, respectively. Similarly, it performs reductions of 73.841%, 26.155%, and 92.595%, respectively, for the three loading levels compared to the baseline situation when power losses are considered. Consequently, the recommended HBOA surpasses the AVO, DMOA, COA, and BWOA when the purpose is to minimize fuel expenditures. In addition, the proposed HBOA significantly reduces pollutant emissions compared to the baseline scenario.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3