Optimization Analysis of Various Parameters Based on Response Surface Methodology for Enhancing NOx Catalytic Reduction Performance of Urea Selective Catalytic Reduction on Cu-ZSM-13 Catalyst

Author:

Li Weiqi12,Wu Jie1,Yao Dongwei2ORCID,Wu Feng2,Wang Lei1,Lou Hua1,He Haibin1ORCID,Hu Jingyi3ORCID

Affiliation:

1. Ningbo C.S.I. Power & Machinery Group Co., Ltd., Ningbo 315020, China

2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

3. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China

Abstract

While selective catalytic reduction (SCR) has long been indispensable for nitrogen oxide (NOx) removal, optimizing its performance remains a significant challenge. This study investigates the combined effects of structural and intake parameters on SCR performance, an aspect often overlooked in previous research. This paper innovatively developed a three-dimensional SCR channel model and employed response surface methodology to conduct an in-depth analysis of multiple key factors. This multidimensional, multi-method approach enables a more comprehensive understanding of SCR system mechanics. Through target optimization, we achieved a simultaneous improvement in three critical indicators: the NOx conversion rate, pressure drop, and ammonia slip. It is worth noting that the NOx conversion rate has been optimized from 17.07% to 98.25%, the pressure drop has been increased from 3454.62 Pa to 2558.74 Pa, and the NH3 slip has been transformed from 122.26 ppm to 17.49 ppm. These results not only advance the theoretical understanding of SCR technology but also provide valuable design insights for practical applications. Our findings pave the way for the development of more efficient and environmentally friendly SCR systems, potentially revolutionizing NOx control in various industries.

Funder

Young Innovative Talent Program

Ningbo Major Research and Development Plan Project

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3