A New Method Based on Time-Varying Filtering Intrinsic Time-Scale Decomposition and General Refined Composite Multiscale Sample Entropy for Rolling-Bearing Feature Extraction

Author:

Ma Jianpeng,Han Song,Li Chengwei,Zhan LiweiORCID,Zhang Guang-zhu

Abstract

The early fault diagnosis of rolling bearings has always been a difficult problem due to the interference of strong noise. This paper proposes a new method of early fault diagnosis for rolling bearings with entropy participation. First, a new signal decomposition method is proposed in this paper: intrinsic time-scale decomposition based on time-varying filtering. It is introduced into the framework of complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN). Compared with traditional intrinsic time-scale decomposition, intrinsic time-scale decomposition based on time-varying filtering can improve frequency-separation performance. It has strong robustness in the presence of noise interference. However, decomposition parameters (the bandwidth threshold and B-spline order) have significant impacts on the decomposition results of this method, and they need to be artificially set. Aiming to address this problem, this paper proposes rolling-bearing fault diagnosis optimization based on an improved coyote optimization algorithm (COA). First, the minimal generalized refined composite multiscale sample entropy parameter was used as the objective function. Through the improved COA algorithm, optimal intrinsic time-scale decomposition parameters based on time-varying filtering that match the input signal are obtained. By analyzing generalized refined composite multiscale sample entropy (GRCMSE), whether the mode component is dominated by the fault signal is determined. The signal is reconstructed and decomposed again. Finally, the mode component with the highest energy in the central frequency band is selected for envelope spectrum variation for fault diagnosis. Lastly, simulated and experimental signals were used to verify the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3