Classification of Alzheimer’s dementia EEG signals using deep learning

Author:

Sen Sena Yagmur1ORCID,Cura Ozlem Karabiber2ORCID,Yilmaz Gulce Cosku3ORCID,Akan Aydin1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Izmir University of Economics, Turkiye

2. Department of Biomedical Engineering, Izmir Katip Celebi University, Turkiye

3. Department of Neurology, Izmir University of Economics, MedicalPoint International Hospital, Turkiye

Abstract

Alzheimer’s dementia (AD) is a predominant neurological disorder arising from corruptions in brain functions and is characterized by a chronic or progressive nature. While the precise etiology of dementia remains incompletely elucidated, its manifestation is frequently associated with discernible structural and chemical alterations in the brain. Living with dementia significantly impacts individuals’ daily lives due to the resultant loss of cognitive functions. This study presents a novel method to monitor and detect AD using advanced signal processing applied to electroencephalography (EEG) signals. The intrinsic time-scale decomposition (ITD) algorithm is employed to extract proper rotation components (PRCs) from EEG signals, utilizing a 5-second EEG segment duration. The proposed method is compared with the detection of 5-second raw EEG segments using a custom one-dimensional convolutional neural network (1D CNN). Additionally, four different quartiles (Quartile 1 (Q1), Q2, Q3, and Q4) of EEG signals are considered to identify the most significant contributor to AD. Experimental results demonstrate that the ITD-based approach yields better detection performance compared to using raw EEG signals. The most promising result is achieved by the EEG-PRCs method in Q1, with an accuracy of 94.00%, sensitivity of 93.50%, and specificity of 93.90%. In contrast, the highest-performing result of the raw EEG segments method is in Q2, with an accuracy of 88.40%, sensitivity of 89.10%, and specificity of 87.60% in terms of detecting AD.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3